
Comment on “Existence of internal modes of sine-Gordon kinks”

C. R. Willis
Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA

�Received 7 April 2005; published 9 June 2006�

In Phys. Rev. B 42, 2290 �1990� we used a rigorous projection operator collective variable formalism for
nonlinear Klein-Gordon equations to prove the continuum sine-Gordon �SG� equation has a long lived quasi-
mode whose frequency �s=1.004�0 is in the continuum just above the lower phonon band edge with a lifetime
�1/�s�=0.0017�0. We confirmed the analytic calculations by simulations which agreed very closely with the
analytic results. In Phys. Rev. E 62, R60 �2000� the authors performed two numerical investigation which they
asserted “show that neither intrinsic internal modes nor quasimodes exist in contrast to previous results.” In this
paper we prove their first numerical investigation could not possibly observe the quasimode in principle and
their second numerical investigation actually demonstrates the existence of the SG quasimode. Our analytic
calculations and verifying simulations were performed for a stationary sine-Gordon soliton fixed at the origin.
Yet the authors in Phys. Rev. E 62, R60 �2000� state the explanation of our analytic simulations and confirming
simulations are due to the Doppler shift of the phonons emitted by our stationary sine-Gordon soliton which
thus has a zero Doppler shift.
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I. INTRODUCTION

In Ref. �1� we proved the continuum sine-Gordon �SG�
equation has a long lived quasimode whose frequency from
simulation is �s= �1.004±0.001��0 �where �0 is the fre-
quency of the lower band edge in units where the speed of
sound c=1� and whose lifetime from simulation is �1/�s�
= �0.003±0.001��0. We used a rigorous projection operator
collective variable �CV� formalism for nonlinear Klein-
Gordon equations derived in Ref. �2� to calculate the quasi-
mode frequency and lifetime. Our calculated theoretical val-
ues for the frequency and inverse lifetime are �
=1.00585�0 and �1/�s�=0.0017�0 which agree very well
with our simulation values.

In Ref. �3� the authors performed two numerical investi-
gations for the SG in which they assert “show that neither
intrinsic internal modes nor quasimodes exist in contrast to
previous results” referring to Ref. �1�. In Secs. III and IV we
analyze their two numerical investigations in detail and
prove their first numerical investigation could not possibly
observe the quasimode in principle and that their second nu-
merical investigations actually observes the SG quasimode at
the beginning of their simulation. However, the length of
their system was so short for their long observation time that
there were many transversals of the system by phonons emit-
ted at different times by the soliton, which then reflected
from the end of the system and then interfered with phonons
emitted later. Thus each phonon interfered with phonons
emitted earlier and phonons emitted later, which led to a very
complicated interference pattern. The authors of Ref. �3�
concluded that the complicated interference pattern was a
“proof” that SG quasimodes do not exist. However, the cor-
rect conclusion is that their poorly designed numerical inves-
tigation was for a time t that was more than ten times too
long for the length of their system to avoid the irrelevant
interferences. In the first 200 s just before the first emitted
phonons reflected off the end of the system and returned to
the stationary emitting SG soliton, the finite lifetime of the
quasimode is clearly observed.

Our analytic calculations and verifying simulations were
all for a continuum, force free and stationary SG soliton i.e.,
the center of mass of the SG was fixed at the origin for all
times. However, in their two numerical investigations in Ref.
�3� the authors provided an explanation of our analytic cal-
culations and verifying simulations, which was that our
phonons were Doppler shifted. This is not possible for
phonons emitted by a stationary SG soliton fixed at the ori-
gin. As a result, their two numerical investigations and their
“explanation” of our results have no relevance to the validity
of our analytic soliton and verifying simulations of our con-
tinuum stationary and force free SG quasimode.

In Sec. II we outline the derivation of the exact equations
of motion for the SG equation. We prove in Sec. III that the
first numerical search for the SG quasimode in Ref. �3� could
not observe the SG quasimode in principle. While in Sec. IV
we show that in their second numerical investigation the au-
thors of Ref. �3� actually observe the SG quasimode at the
beginning of their simulation. However, their simulation was
for a time too large for the length of their system. Conse-
quently, they observed a complicated interference pattern
which was irrelevant in the SG quasimode that was clearly
observable at the beginning of their simulation. In Sec. VI
we present our conclusions and discuss a recent work, Ref.
�5�, which contains a solution of the SG equation by using
the inverse transform method and find our SG quasimode
solution is valid.

II. EQUATIONS OF MOTION FOR THE SG QUASIMODE

The purpose of this section is to outline the derivation of
the equations of motion from our exact CV equations for the
SG equation in Ref. �1� that we actually solved for the SG
quasimode in Ref. �1�. We need these rigorous equations in
order to contrast them with the two CV equations of motion
for the kink momentum P�t� and width of the kink l�t� which
form the basis of their theoretical analysis of our equations
of motion and which we repeat below in Eqs. �6� and �8�.
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Where we show their equation of motion for P�t� is irrel-
evant to our derivations of the SG quasimode and their equa-
tion of motion for ��t� is independent of the phonon dressing
whose interaction with � gives rise to the SG quasimode.
The slope ��t�=2��l�t��−1.

We start with the equation of motion for X�t�, ��t�, and
��t� whose solutions are rigorously equivalent to the solution
of the SG partial differential equation

�2�

�t2 −
�2�

�x2 + ��

l0
�2

sin � = 0, �1�

where
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Ẋ�̇ − � �̇

�
�2

�	�	
2��


− 2
�̇

�
�	�	


���

�t
� + 2Ẋ��	�	

���

�t
� −

�̈

�
�	�	
��


+ 2�	�	��
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where
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is the bare mass of the kink associated with the X motion,
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2Ẋ

�
�
	�	

���

�t
� + �2Ẋ�̇
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where

M� � �−3�
	�	
	�
 . �9�

Since the center of mass motion does not play any role in
the existence of the SG quasimode we set X�t��0 in the
equations of motion for ��t� and ��t�. We are interested in
small oscillations of the quasimode so we linearize Eqs. �5�
and �8� to first order in � and obtain
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Since we are considering only small oscillations in � we
further linearize Eqs. �10� and �11� in �����t�−�0. Finally
we obtain

�2�

�t2 − �0
2�� + �0

2� cos 	0 = 2�0��	0� − 
0	0�
��̈

�0
, �12�

and
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��̈ = − �SG
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where

	0 � 			�=�0
, 
0 � �0x .

In the remainder of Ref. �1� we solved these equations of
motion analytically and calculated the lifetime of the quasi-
mode.

III. FIRST NUMERICAL INVESTIGATION

The first numerical search for the SG quasimode in Ref.
�3� consisted of trying to find the SG quasimode by measur-
ing numerically the absorption spectrum of a discrete SG
equation driven by an ac field. What they measured was the
phonon absorption spectrum of the linearized discrete SG
equation in an ac field which is

�̈n − ��n+1 + �n−1 − 2�n� + �0
2�n

= �	n+1 + 	n−1 − 2	n�Ẋ2 + f�t� , �14�

where 	n is the discrete SG soliton at position n, and �n is
the discrete SG phonon at position n. The external ac field is

f�t�=� exp�i�t� and Ẋ�t� is the velocity of the center of mass
of the SG soliton. We point out again our derivations and

simulations were for a stationary continuum SG where Ẋ�t�
�0. The spectrum they obtained by numerically solving the
ac driver discrete SG equation is given in their Fig. 1 namely

�n = �1 + �2�n

l
�2�1/2

for n = 1,2, . . . ,N , �15�

which is just the spectrum one obtains by solving Eq. �1�
analytically. For f�t�=� cos �t and Ẋ�t�=0 the spectrum is
�n���−�n�. If you include X�t� you get exactly the same
spectrum by taking f�t�=cos��� /2�t� because P2�t� is then
proportional to cos�2�� /2�t�, which also yields the identical
spectrum �n���−�n�. This is what they observe and what
one obtains by analytically solving Eq. �14�. Equation �14�,
which is the basis of their first numerical investigation, is
never mentioned in Ref. �3�; only the numerically observed
spectrum Eq. �15� is presented.

What is most important about their first numerical inves-
tigation, is that it could not possibly detect the quasimode
even in principle. In order to observe a quasimode in absorp-
tion it must first be created and then observed during its finite
lifetime. Consequently, a quasimode is usually observed in
emission. The SG quasimode can be excited as an initial
condition by deforming the slope or the width of the kink as
an initial condition as we did in our derivations and simula-
tions in Ref. �1� and as the authors of Ref. �3� did in their
second numerical investigation which we discuss in the next
section. The quasimode can also be excited by any potential
that distorts the slope of width of the SG soliton. The force
on the slope ��t� due to a potential V�x� is

F = dx V,	�x�
�	

��
. �16�

For an ac field V,	= f�t�, so the force F vanishes because
f�t��dx��	 /���=0. Thus an ac field cannot possibly excite a
phonon mode. Consequently, their first numerical investiga-
tion in Ref. �3� could not possibly detect the presence of the
SG quasimode and thus it has no relevance to the existence
or nonexistence of the SG quasimode. It is important to
stress that a quasimode is different from an eigenmode of a
linearized Klein-Gordon equation in that an unoccupied
eigenmode exists even if it is unoccupied, whereas a quasi-
mode has first to be created in order to be observed and it
lasts only for its lifetime.

IV. SECOND NUMERICAL INVESTIGATION

In Ref. �1� we performed simulations that verified our
analytic solutions for the SG quasimode. We performed three
simulations for ��t� and ��t� for a stationary SG soliton. We
also simulated the Fourier transform of ��t� which gives the
quasimode frequency and lifetime. The simulations agree
very closely with analytic results. We considered cases where
the initial slope was different from �0, i.e., ���0��0 and for

��̇�0��0. We considered two cases where the length of the
system was 1000 units and a third case where the length of
the system was 200 units. For the system of length 1000 we
followed the time development of ��t� and ��t� for times t
that were short compared with the time a spontaneously
emitted phonon would travel to the end of the system reflect
and interfere with phonons emitted later. In the third case we
took a short system L=200 and followed the time until the
spontaneously emitted phonon first reflected from the end of
the system. We pointed out that eventually the first emitted
phonons would reflect from the end and interfere with
phonons emitted later. Thus simulation of the stationary SG
quasimode should have a sufficiently long system that there
are no reflections during the time of observation or equiva-
lently for a fixed length L the time of observation should be
less than �L /c� where c is the speed of sound.

In Fig. 2 of Ref. �3� the length of the system was L
=100. They followed the time development of the width l�t�
for 2500 s. The round trip time of a phonon emitted by a
stationary SG soliton at one end reflect and go back to the
stationary SG soliton is 200 s. Thus during their 2500 s ob-
servation time there were phonons that made more than
twelve trips that would interfere with phonons emitted earlier
and later. The quasimode lifetime is 500 s. So phonons could
be emitted, travel to the end of the system, reflect and be
reabsorbed by the still excited quasimode. Consequently,
during their 2500 s simulation time, phonons are continu-
ously being emitted, interfering with previously emitted
phonons reflecting from the ends of the system and some-
times being absorbed by the stationary SG soliton at the end
of the system. Consequently, the simulation of Fig. 2 in Ref.
�3� should show a very complicated interference pattern with
multiple time scales but with a period of 200 s playing a
prominent role, which is precisely what they observe. If they
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had taken a much longer system or had just simulated for
times up to 200 s, they would have verified the existence of
the SG quasimode. Actually, the first 200 s of their simula-
tion of the width l�t� gives a very good representation of the
SG quasimode. Thus the flawed design of their simulation in
Fig. 2 is the cause of their complicated interference pattern.

Once again, in their second numerical solution the authors
of Ref. �3� ignore the phonon dressing which gives rise to the
SG quasimode. In Ref. �1� we calculated and simulated the
phonon dressing which shows how the dressing decays as the
quasimode emits phonons during its lifetime while the slope

decays from ��0� to the constant slope �0 and �̇�0� decays to
zero. Also, as in their first numerical simulation, the second
numerical solution is for an appreciably discrete phonon sys-
tem while our derivations and simulations were for the con-
tinuum SG equation. Here it is interesting to observe that the
qualitative behavior of the appreciably discrete SG system is
similar to our analytic calculations and simulations for the
continuum SG.

V. DISCUSSION

The authors of Ref. �3� performed two numerical investi-
gations for which they state “we show that neither intrinsic
internal modes nor quasimodes exist in contrast to previous
reports” referring in particular to our Ref. �1�. In Sec. III we
proved that the SG quasimodes that we had derived analyti-
cally and verified by simulation could not possibly be ob-
served by their first numerical investigation. The reason is
that in order to observe the SG quasimode it must first be
created and then observed during its finite lifetime. We
proved in Sec. III that an ac driver cannot create a SG quasi-
mode and thus their ac absorption numerical experiment
could not possibly observe the SG quasimode but could only
measure the phonon absorption spectra of their discrete SG
phonon eigenmodes. Our derivations were for a force free,
stationary, continuum SG soliton. However, their first nu-
merical investigation is for an ac driven discrete SG soliton.
They measured numerically the discrete SG spectrum. How-
ever, the phonon spectrum of the SG plays absolutely no role
in our analysis, it does not appear in any of our derivations
and is irrelevant to our results. The SG quasimode comes
from the solution of the coupled continuum equations for the
slope of the kink, ��t�, and the phonon dressing for ��t�.
Consequently, their first numerical investigation has no rel-
evance to the existence or nonexistence of the SG quasi-
mode.

In their second numerical investigation of the SG equation
they started a discrete stationary SG with an initial rate of

change of the slope �̇�0��0 and ��0��0. In Ref. �1� we
considered three such cases except our derivations and simu-
lations were for the continuum SG and for initial values

��̇�0� of 0.01 and 0.001 and ��0=0.1. The quasimode we
derived analytically and verified by simulation was for a lin-
ear mode. However, they actually observed the quasimode in
the first 200 s of their simulation. They however took a sys-
tem too short for the length of time they followed the simu-
lations. Consequently, they obtained a very complicated pho-

non interference pattern due to the multiple phonon
interferences due to the earlier emitted phonons interfering
with phonons emitted earlier and later because of the mul-
tiple reflections of the phonons from the ends of the system.
In addition, there were multiple absorptions and reemissions
of the phonons with the stationary soliton. If they had in-
creased their system from L=100 to L=400 and followed the
simulation for t=500 s instead of their t=2500 s they would
have obtained essentially the same diagram we obtained for
��t�.

The authors of Ref. �3� state their theoretical analysis of
our paper is based on their two cc equations

dP

dt
= − q� sin��t + �0� , �17�

where

P�t� � M0l0Ẋl−1�t� ,

and

�l̇2 − 2ll̈� =
l2

l0
2�1 +

P2

M0
2� − 1. �18�

Their width variable l�t� / l0 is essentially the inverse of our
variable ��t�. Since our X�t��0 their variable X�t� should be
identically zero and have no relevance to any of our deriva-
tions and verifying simulations. They obtained the width l�t�
in their numerical solution of the discrete SG in their Fig. 2,
which we discussed in detail in Sec. III. Furthermore, their
Eq. �3� for l�t� is incorrect because it contains none of the
many terms proportional to ��t� that appear in the exact
equation of motion for ��t� in Eq. �8� which are necessary
for the existence of the quasimode. Consequently, their two
equations of motion for P�t� and l�t� which they state are the
“basis of their theoretical analysis” of Ref. �3� have no rel-
evance to our analytic derivation and confirming simulations.

One surprising aspect of Ref. �3� is the lack of any men-
tion or discussion of the continuum states � of the SG equa-
tion in the presence of the SG soliton that are responsible for
the existence of the SG quasimode. The solution for � de-
rived in Eq. �11� of Ref. �1� constitutes a dynamical dressing
of the sine-Gordon soliton due to the oscillation of ��t�.

Several times in Ref. �3� the authors compare the SG
quasimode with the �4 equation internal mode, which is an
exact eigenmode of the linearized �4 equation whose eigen-
frequency is in the phonon gap. They state that since they
can observe the �4 eigenmode in absorption but cannot ob-
serve the SG quasimode in absorption, this proves the SG
quasimode does not exist. However, a quasimode is not an
eigenmode. A quasimode can be observed in emission but
cannot be observed in absorption unless it is first created and
then observed within its finite lifetime. In Ref. �1� we proved
that the SG quasimode cannot be excited by the ac field used
in Ref. �3�.

Finally, in spite of the fact that all our derivations and
verifying simulations were done for the continuum SG, the
simulations and analysis by the authors of Ref. �3� were done
for an appreciably discrete SG equation. In particular they
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report finding a discrete mode in the phonon gap that was
found by Kevrekidis and Jones, Ref. �4�. It is important to
observe that none of the discrete simulations are relevant to
the exact analytic calculations and simulations of our con-
tinuum SG equation.

VI. CONCLUSION

In Ref. �3� the authors did not make a simple reference to
or comment upon the exact analytic solutions and their veri-
fying simulations of the SG quasimode in Ref. �1�. Further-
more, they never mention the continuum SG states � that
interact with the SG soliton to form the SG quasimode. The
authors of Ref. �3� performed two numerical investigations
of the discrete SG equation to attempt to prove the SG quasi-
mode does not exist. The first simulation was an absorption
measurement of an ac field, which we proved could not pos-
sibly observe the SG quasimode in principle. The second
simulation was for an initially deformed discrete SG soliton,
which they followed in time. In the first 200 s they actually
observed the discrete SG soliton. However, they took a sys-
tem too short for their 2500 s observation time. Conse-
quently, they observed a complicated phonon interference
pattern caused by the multiple interferences between
phonons emitted at different times which they incorrectly
interpreted as the nonexistence of the SG quasimode instead
of the fact they observed the system over twelve times too
long for the length of their system.

Recently Kalbermann �5� found new important analytic
nonperturbative solutions to the SG equation using the in-

verse scattering transform method. He states “his solutions
agree very closely with the results of Boesch and Willis �our
Ref. �1�� in the quasimode regime” as shown in his Fig. 4 of
Ref. �5�. Also, Kalbermann in Ref. �5� points out “a probable
source of error in the numerical calculations of Quintero et
al.” �3�. The numerical calculation he refers to in his Ref. �5�
is the same numerical investigation which we labeled the
second numerical investigation in Sec. IV of the present pa-
per. His explanation is essentially identical to the explanation
we give in Sec. IV of the present paper.

In their conclusion Quintero et al. �3� provided an expla-
nation of our results. They state “the resonance observed by
Boesch and Willis took place in fact with the lowest fre-
quency phonon in the presence of a moving kink and not
with any internal quasimode.” Their argument is, since the
kink is moving, there is a Doppler shift, i.e.

�̄k =
�k − ku�0�

„1 − u2�0�…1/2 ,

where

�k = �1 + k2�1/2.

However, all our analytic calculations and verifying simula-

tions are for a stationary kink, i.e., Ẋ�t��0 so the kink is not
moving and thus the Doppler shift is identically zero. There-
fore their explanation that our results are due to a Doppler
shift cannot possibly be correct.
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